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Example of transferred images and corresponding styles using MSG-Net

Overview:

Method:

Results:

Brush-size control using MSG-Net. Top left: High-
resolution input image and dense style. Others: Style 
transfer results using MSG-Net with brush-size control.
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Ø Introduce MSG-Net with a novel CoMatch Layer learning to match the feature statistics with 
the target styles at run time.

Ø Achieve the trinity of style transfer, including image quality, style flexibility and real-time
performance.

Ø Enable run-time controls, including content-style interpolation, color-preserving, spatial 
control and brush stroke size control.
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Multi-style Generative Network for Real-
time Transfer

Ø Content and style representation (Gatys et al.) for input image !:
• Activation of descriptive network ℱ ! ∈ ℝ%×'×(

• Gram Matrix of the featuremap ) ℱ ! = ∑ℎ=1' ∑.=1( ℱ ! ⋅ ℱ ! 0

Ø Ideal solution 12 for style transfer of input content image !3 and style image!4:
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2
{ 2 − ℱ != >

2 + A ) 2 − ) ℱ !B >
2}

Ø CoMatch Layer:
12 = Φ−1[Φ ℱ !=
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where W ∈ ℝ%×% is a learnable weight matrix and Φ() is a reshaping operation.

Ø Intuition for learnable parameter (:

• Let W = ) ℱ !B
−1
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2 is minimized
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, where ℒ(ℱ !B ) is obtained by the Cholesky 
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is minimized.

• We don’t set ( manually, but let it learned directly from the loss function instead.

Spatial control using MSG-Net. Left: input image, 
middle: foreground and background styles, right: style 
transfer result.

Color control using MSG-Net, (left) content and style 
images, (right) color-preserved transfer result.

Qualitative comparisons with other approaches, MSG-Net achieves superior performance.

Comparing Brush-size control. a) High-resolution input image and dense styles. b) 
Style transfer results using MSG-Net with brush-size control. c) Standard 
generative network without brush-size control.

Content and style trade-off and interpolation.

An overview of MSG-Net, Multi-style Generative Network. The transformation network explicitly matches the features 
statistics of the style targets captured by a Siamese network using the proposed CoMatch Layer (introduced in Section 3). A 
pre-trained loss network provides the supervision of MSG-Net learning by minimizing the content and style differences with 
the targets

Ø Network learning:
Let the generative network be denoted as 
L(!3, !4). The loss function is given:
N(O = argmin
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where V3 and V4 are the balancing 
weights for content and style losses. 
ℓ^_() is the total variation regularization.

Ø Code Implementations:
Ø PyTorch:

Ø MXNet:

Ø Torch:


