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An overview of MSG-Net, Multi-style Generative Network. The transformation network explicitly matches the features
statistics of the style targets captured by a Siamese network using the proposed CoMatch Layer (introduced in Section 3). A
pre-trained loss network provides the supervision of MSG-Net learning by minimizing the content and style differences with

the targets
Results:
NS | | e » Network learning:
Example of transferred images and corresponding styles using MSG-Net Let the generative network be denoted as
) G(x., xs). The loss function 1s given:
Overview: W = argmin Ey
Wg
> Introduce MSG-Net with a novel CoMatch Layer learning to match the feature statistics with Ae||F(G (e, x5)) — F ) Hi
the target styles at run time. K °
» Achieve the trinity of style transfer, including image quality, style flexibility and real-time As z HQ (T (Gxe, xs))) — G(F(xs)) H
performance. =1 F
. . . . . . . +Arvlry (G (xe, x5))
» Enable run-time controls, including content-style interpolation, color-preserving, spatial :
. where A, and A, are the balancing
control and brush stroke size control. :
weights for content and style losses.
4 1s the total variation regularization.
Method: 0 i

» Content and style representation (Gatys et al.) for input image x:
]RCxH XW

» Activation of descriptive network F(x) €
e Gram Matrix of the featuremap G (T (x)) =Y YW Fx) - Fx)T
» ldeal solution y for style transfer of input content image x,. and style imagex.:

- . 2 .
9 = argmin(lly — FII? +a|§0) - G(F )|} > Code Implementations;
y

» PyTorch:
» CoMatch Layer:

. _ T
y =07 O(F(x)) WG(F(x:))]"
where W € R“*¢ is a learnable weight matrix and ®() is a reshaping operation.

> Intuition for learnable parameter W » MXNet:

Brush-size control using MSG-Net. Top left: High-
resolution input image and dense style. Others: Style

e TetW = cp(j: (xc))_T L(T (xs))_l, where L(F(x,)) is obtained by the Cholesky transfer results using MSG-Net with brush-size control.

e LetW = Q(T(xs))_l, then ||y — F(x,.)||% is minimized

Decomposition of G(F(x,)) = L(F(x))L(F(x,) , then [|G(») — G(F (x))|| is minimized.

 We don’t set W manually, but let it learned directly from the loss function instead.
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(a) input (b) MSG-Net (ours) (¢) baseline

Comparing Brush-size control. a) High-resolution input image and dense styles. b)
Style transfer results using MSG-Net with brush-size control. ¢) Standard
generative network without brush-size control.

Spatial control using MSG-Net. Left: mnput image, Color control using MSG-Net, (left) content and style
middle: foreground and background styles, right: style images, (right) color-preserved transfer result.
transfer result.
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