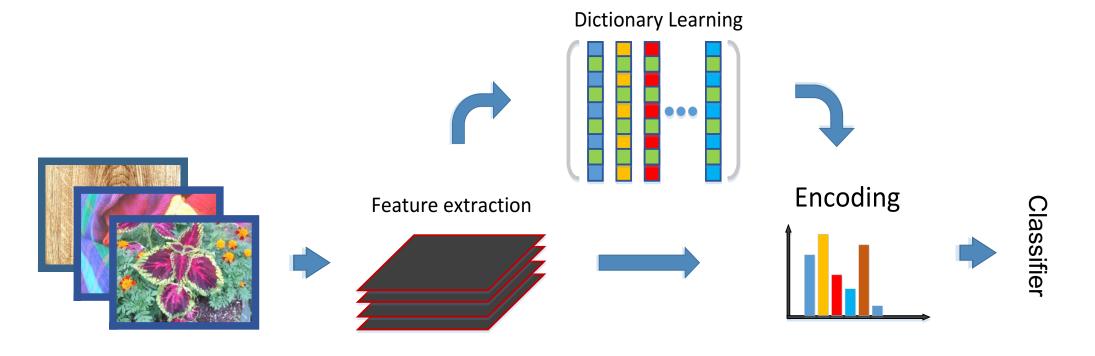


Overview:

- Encoding-Net (a new CNN architecture) with a novel Encoding Layer.
- State-of-the art results on texture recognition (minc-2500, FMD, GTOS, 4D-light datasets).
- Flexible deep learning framework (arbitrary image size and easy to transfer learned features).

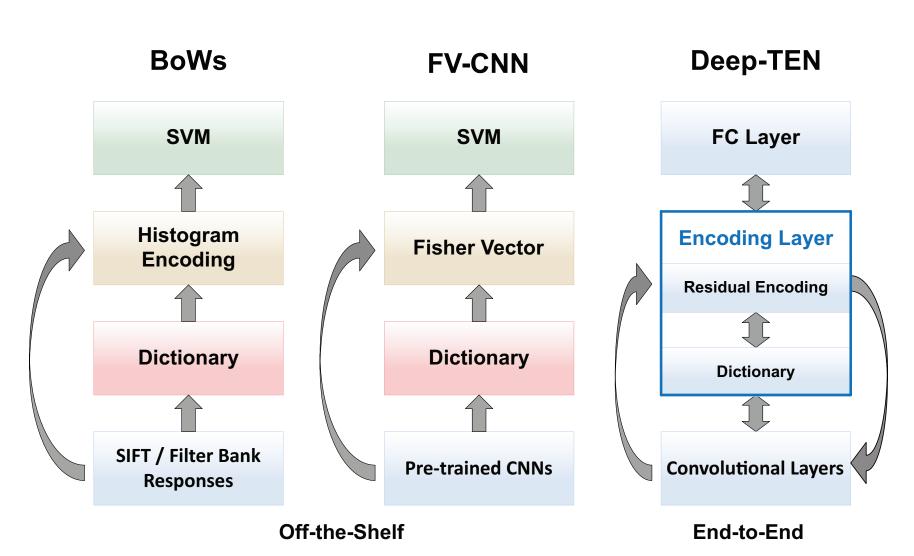


Classic Vision Approaches

- Flexible by allowing arbitrary input image size.
- No problem of domain transfer (features are generic).
- Dictionary encoding usually carries domain information.

> Deep learning

- Preserving spatial information (texture needs orderless).
- Fixed image size.
- Difficulties in domain transfer.



Deep TEN: Texture Encoding Network Hang Zhang, Jia Xue, Kristin Dana

{zhang.hang, jia.xue}@rutgers.edu, kdana@ece.rutgers.edu, Department of Electrical and Computer Engineering, Rutgers University.

Encoding Layer :

Residual Encoder

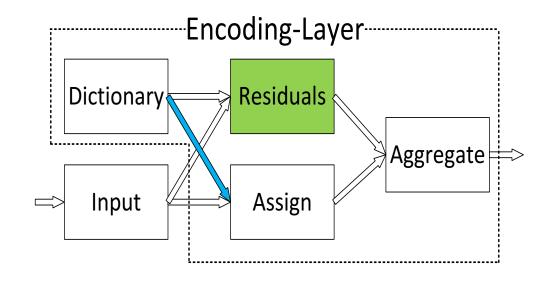
- Given a set of visual descriptors $X = \{x_1, \dots, x_N\}$ and a learned codebook $C = \{c_1, ..., c_K\}.$
- Each descriptor x_i can be assigned with a weight a_{ik} to each codeword c_k .
- The residual encoder aggregate the residuals with assignment weights

$$e_k = \sum_{i=1}^{N} e_{ik} = \sum_{i=1}^{N} a_{ik} r_{ik}$$

Assignment Weights:

Soft-weighting
$$a_{ik} = \frac{\exp(-\beta \|r_{ik}\|^2)}{\sum_{j=1}^{K} \exp(-\beta \|r_{ij}\|^2)}$$

• Learnable smoothing Factor $a_{ik} = \frac{\exp(-s_k \|r_{ik}\|^2)}{|r_{ik}||^2}$ $\sum_{j=1}^{K} \exp(-s_j \|r_{ij}\|^2)$



Relation to Other Approaches:

- Dictionary learning: K-means or K-SVD
- BoW, VLAD, Fisher Vector & Net-VLAD
- Global Pooling: Avg-pool, SPP-Net, Bilinear pool

Domain Transfer

- The Residual Encoding discards the frequently appearing features, which is likely to be domain specific.
- For a visual feature x_i that appears frequently in the data, it is likely close to a visual center d_k
- a). $e_k \approx 0$, since $r_{ik} = x_i d_k \approx 0$
- b). $e_i \approx 0 \ (j \neq k)$, since $a_{ik} \approx 0$ (soft-assignment)

Compare to State-of-the-art

	MINC-2500	FMD	GTOS	KTH	4D-Light
Deep-TEN* (ours)	81.3	80.2±0.9	84.5±2.9	84.5±3.5	$81.7_{\pm 1.0}$
State-of-the-Art	$76.0_{\pm 0.2}$ [2]	82.4 _{±1.4} [5]	N/A	81.1±1.5 [4]	77.0 _{±1.1} [43]

Experiments:

Dataset

- Material & texture datasets: *MINC-2500, KTH, FMD, 4D-light, GTOS*
- General recognition datasets: *MIT-Indoor, Caltech-101*

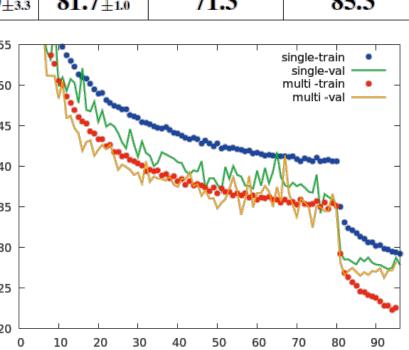
Baselines

- FV-SIFT (128 Gaussian Components, $32K \Rightarrow 512$)
- FV-CNN (Cimpoi *et al*. VGG-VD & ResNet, 32GMM)

	MINC-2500	FMD	GTOS	KTH	4D-Light	MIT-Indoor	Caltech-101
FV-SIFT	46.0	47.0	65.5	66.3	58.4	51.6	63.4
FV-CNN (VGG-VD)	61.8	75.0	77.1	71.0	70.4	67.8	83.0
Deep-TEN (ours)	80.6	80.2±0.9	84.3±1.9	82.0±3.3	$81.7_{\pm 1.0}$	71.3	85.3

Effect of Multi-size Training

- Ideally arbitrary image sizes
- Training with pre-defined sizes iteratively w/o modifying solver



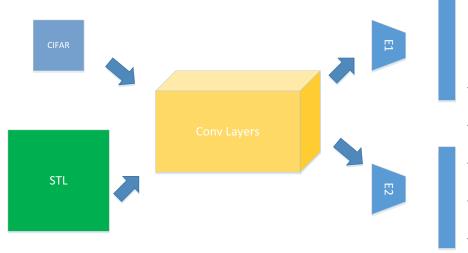
Single-size testing for simplicity 20 0 10 20 30 40 50 60 70 80 90

	MINC-2500	FMD	GTOS	KTH	4D-Light	MIT-Indoor
FV-CNN (VGG-VD) multi	63.1	74.0	79.2	77.8	76.5	67.0
FV-CNN (ResNet) multi	69.3	78.2	77.1	78.3	77.6	76.1
Deep-TEN (ours)	80.6	$80.2_{\pm 0.9}$	84.3±1.9	82.0±3.3	$81.7_{\pm 1.0}$	71.3
Deep-TEN (ours) multi	81.3	78.8 ± 0.8	84.5±2.9	84.5±3.5	81.4 _{±2.6}	76.2

Table 4: Comparison of single-size and multi-size training

Joint Encoding

- Dictionary encoding representation is likely to carry domain information.
- The features are likely to be generic.
- CIFAR-10: 36×36 STL-10: 96×96



Code here!

(Only shallow architectures co	nsidered.)
--------------------------------	------------

	STL-10	CIFAR-10
Deep-TEN (Individual)	76.29	91.5
Deep-TEN (Joint)	87.11	91.8
State-of-the-Art	74.33 [49]	-

July 21-26 2017

Gradients w.r.t Input X The encoder $E = \{e_1, ..., e_K\}$ can be viewed as k independent sub-encoders. Therefore the gradients of the loss function ℓ w.r.t input descriptor x_i can be accumulated $\frac{d_{\ell}}{d_{r_{\ell}}} = \sum_{k=1}^{K} \frac{d_{\ell}}{d_{e_{\ell}}} \cdot \frac{d_{e_{k}}}{d_{r_{\ell}}}$. According to the chain rule, the gradients of the encoder w.r.t the input is given by

$$\frac{d_{e_k}}{d_{x_i}} = r_{ik}^T \frac{d_{a_{ik}}}{d_{x_i}} + a_{ik} \frac{d_{r_{ik}}}{d_{x_i}},\tag{4}$$

where a_{ik} and r_{ik} are defined in Sec 2, $\frac{d_{r_{ik}}}{d_{r_i}} = 1$. Let $f_{ik} = e^{-s_k \|r_{ik}\|^2}$ and $h_i = \sum_{m=1}^K f_{im}$, we can write $a_{ik} = \frac{f_{ik}}{h}$. The derivatives of the assigning weight w.r.t the input descriptor is

$$\frac{d_{a_{ik}}}{d_{x_i}} = \frac{1}{h_i} \cdot \frac{d_{f_{ik}}}{d_{x_i}} - \frac{f_{ik}}{(h_i)^2} \cdot \sum_{m=1}^K \frac{d_{f_{im}}}{d_{x_i}},$$
 (5)

where $\frac{a_{f_{ik}}}{d_{x_i}} = -2s_k f_{ik} \cdot r_{ik}$.

Gradients w.r.t Codewords C The sub-encoder e_k only depends on the codeword c_k . Therefore, the gradient of loss function w.r.t the codeword is given by $\frac{d_{\ell}}{d_{e_k}} = \frac{d_{\ell}}{d_{e_k}} \cdot \frac{d_{e_k}}{d_{e_k}}$.

$$\frac{d_{e_k}}{d_{c_k}} = \sum_{i=1}^N (r_{ik}^T \frac{d_{a_{ik}}}{d_{c_k}} + a_{ik} \frac{d_{r_{ik}}}{d_{c_k}}), \tag{6}$$

where $\frac{d_{r_{ik}}}{d_{c_i}} = -1$. Let $g_{ik} = \sum_{m \neq k} f_{im}$. According to the chain rule, the derivatives of assigning w.r.t the codewords can be written as

$$\frac{d_{a_{ik}}}{d_{c_k}} = \frac{d_{a_{ik}}}{d_{f_{ik}}} \cdot \frac{d_{f_{ik}}}{d_{c_k}} = \frac{2s_k f_{ik} g_{ik}}{(h_i)^2} \cdot r_{ik}.$$
 (7)

Gradients w.r.t Smoothing Factors Similar to the codewords, the sub-encoder e_k only depends on the k-th smoothing factor s_k . Then, the gradient of the loss function w.r.t the smoothing weight is given by $\frac{d_{\ell}}{d_{s_1}} = \frac{d_{\ell}}{d_{e_1}} \cdot \frac{d_{e_k}}{d_{s_1}}$.

$$\frac{d_{e_k}}{d_{s_k}} = -\frac{f_{ik}g_{ik} \|r_{ik}\|^2}{(h_i)^2} \tag{8}$$

Note In practice, we multiply the numerator and denominator of the assigning weight with e^{ϕ_i} to avoid overflow:

$$a_{ik} = \frac{\exp(-s_k \|r_{ik}\|^2 + \phi_i)}{\sum_{j=1}^K \exp(-s_j \|r_{ij}\|^2 + \phi_i)},$$
(9)

where $\phi_i = \min_k \{s_k \| r_{ik} \|^2\}$. Then $\frac{d_{\bar{f}_{ik}}}{d_{x_i}} = e^{\phi_i} \frac{f_{ik}}{d_{x_i}}$.