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Overview:
Ø Encoding-Net	(a	new	CNN	architecture)	with	a	novel	

Encoding	Layer.
Ø State-of-the	art	results	on	texture	recognition

(minc-2500,	FMD,	GTOS,	4D-light	datasets).
Ø Flexible deep learning framework (arbitrary image size and

easy to transfer learned features).

Encoding	Layer	:
Ø Residual Encoder

• Given a set of visual descriptors 𝑋 = {𝑥%, . . 𝑥(} and a learned
codebook 𝐶 = {𝑐%, … 𝑐-}.

• Each descriptor 𝑥. can be assigned with a weight 𝑎.0to each
codeword 𝑐0.

• The	residual	encoder	aggregate	the	residuals	with	assignment	
weights	
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Experiments:
Ø Dataset

• Material & texture datasets: MINC-2500, KTH, FMD, 4D-light, GTOS

• General recognition datasets: MIT-Indoor, Caltech-101

Ø Baselines
• FV-SIFT (128 Gaussian Components, 32𝐾 ⇒ 512)
• FV-CNN (Cimpoi et al. VGG-VD & ResNet, 32GMM)
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Ø Classic Vision Approaches
• Flexible by allowing arbitrary input image size.
• No problem of domain transfer (features are generic).
• Dictionary	encoding	usually	carries	domain	information.

Ø Deep learning
• Preserving spatial information (texture needs orderless).
• Fixed image size.
• Difficulties in domain transfer.
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Ø Relation to Other Approaches:
• Dictionary	learning:	K-means	or	K-SVD
• BoW,	VLAD,	Fisher	Vector	&	Net-VLAD
• Global	Pooling:	Avg-pool,	SPP-Net,	Bilinear	pool

Ø Domain Transfer
• The	Residual	Encoding	discards	the	frequently	appearing	

features,	which	is	likely	to	be	domain	specific.
• For	a	visual	feature	𝑥. that	appears	frequently	in	the	data,	it	is	

likely	close	to	a	visual	center	𝑑0
a).	𝑒0 ≈ 0,	since	𝑟.0 = 𝑥. − 𝑑0 ≈ 0
b).	𝑒? ≈ 0	 𝑗 ≠ 𝑘 ,	since	𝑎.0 ≈ 0 (soft-assignment)

Ø Compare to State-of-the-art

Ø Assignment Weights:
• Soft-weighting

𝑎.0 =
exp(−𝛽 𝑟.0 I)
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• Learnable	smoothing	Factor

𝑎.0 =
exp(−𝑠0 𝑟.0 I)
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Ø Effect of Multi-size Training
• Ideally	arbitrary	image	sizes
• Training	with	pre-defined	sizes	

iteratively	w/o	modifying	
solver

• Single-size	testing	for	simplicity

Ø Joint Encoding
• Dictionary	encoding	representation	is	likely	to	carry	

domain	information.
• The	features	are	likely	to	be	generic.
• CIFAR-10:	36×36

STL-10:					96×96
Code	here!

(Only shallow architectures considered.)


